
Global Tectonics G404 Lecture-2

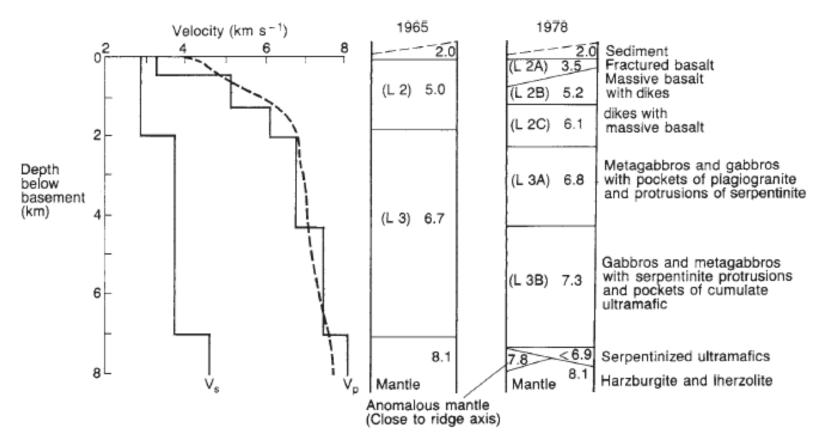
Instructor Dr. Ali Z. Almayahi

Chapter 2 – The Interior of the Earth (Detailed Summary)

2.1 Earthquake Seismology

Seismic Waves

- Body Waves:
 - o P-waves (Primary/Compressional):
 - Fastest (~6–8 km/s in crust, ~13 km/s in mantle).
 - Can travel through solids, liquids, and gases.
 - First to arrive at seismographs.
 - S-waves (Secondary/Shear):
 - Slower (\sim 3–5 km/s in crust, \sim 7 km/s in mantle).
 - Only travel through solids (absent in outer core, proving it's liquid).
- Surface Waves:
 - Love waves: Horizontally polarized, cause horizontal shaking.
 - Rayleigh waves: Elliptical ground motion, most destructive.


Earthquake Location & Focal Mechanisms

- Epicenter vs. Hypocenter:
 - Hypocenter: Actual rupture point underground.
 - Epicenter: Surface projection directly above the hypocenter.
- **Triangulation**: Uses P-S wave arrival time differences to locate earthquakes.
- Focal Mechanism Solutions (Beachball Diagrams):
 - Used to determine fault type (normal, reverse, strike-slip).
 - **Ambiguity**: Cannot distinguish between the actual fault plane and the auxiliary plane.

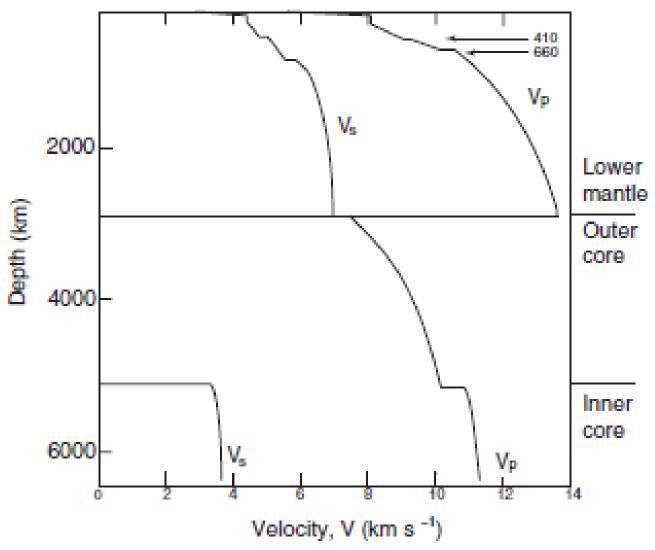
Velocity Structure of the Earth

Crust

- Continental Crust:
 - o Thickness: 20–80 km (thickest under mountains, thinnest under rifts).
 - Layers:
 - *Upper crust* (granodiorite, 5.6–6.3 km/s P-wave).
 - Lower crust (mafic, 6.8–7.7 km/s P-wave).
 - Conrad Discontinuity: Boundary between upper and lower crust (not always present).
- Oceanic Crust:
 - Thickness: ~7 km (uniform globally).
 - Layers:
 - Layer 1: Sediments (0–2 km).
 - Layer 2: Basalts & sheeted dikes (3.4–6.2 km/s).
 - **Layer 3**: Gabbro (6.4–7.0 km/s).

P and S wave velocity structure of the oceanic crust and its interpretation in terms of layered models proposed in 1965 and 1978. Numbers refer to velocities in km s 1. Dashed curve refers to gradational increase in velocity with depth deduced from more sophisticated inversion techniques (after Spudich & Orcutt, 1980 and Harrison & Bonatti, 1981).

Differences: Continental vs. Oceanic Crust


Feature	Continental Crust	Oceanic Crust
Thickness	20–80 km	~7 km
Age	Up to 4 Ga	<200 Ma
Composition	Felsic (granitic)	Mafic (basaltic)
Density	2.7 g/cm^3	3.0 g/cm^3

Mantle

- Low Velocity Zone (LVZ, 100–300 km):
 - Weak, partially molten (1% melt), allows lithospheric plate movement.
- Transition Zone (410–660 km):
 - Phase changes:
 - 410 km: Olivine \rightarrow Wadsleyite (β -spinel).
 - 660 km: Ringwoodite → Perovskite + Magnesiowüstite.
- Lower Mantle (660–2891 km):
 - Mostly perovskite (MgSiO₃).
 - **D" Layer (base of mantle):**
 - Ultra-low velocity zones (ULVZs), possible plume sources.

Core

- Outer Core (2891–5150 km):
 - Liquid iron-nickel alloy (no S-waves).
 - o Generates Earth's magnetic field via geodynamo effect.
- Inner Core (5150–6371 km):
 - Solid iron-nickel (high pressure).
 - Anisotropic (faster P-waves along rotation axis).

Seismic wave velocities as a function of depth in the Earth showing the major discontinuities. AK 135 Earth model specified by Kennett et al., 1995 (after Helffrich & Wood, 2001, with permission from Nature **412**, 501–7. Copyright © 2001 Macmillan Publishers Ltd.).

Composition of the Earth

- Bulk Earth Composition:
 - o **Core**: Fe-Ni alloy (+ lighter elements: S, O, Si).
 - Mantle: Peridotite (olivine + pyroxene + garnet).
 - o Crust:
 - *Continental*: Felsic (Si, Al-rich).
 - Oceanic: Mafic (Fe, Mg-rich).
- Meteorite Analogs:
 - Chondrites (primitive mantle).

Iron meteorites (core analog).

Crust & Mantle Details

Ophiolites: Ancient Oceanic Crust

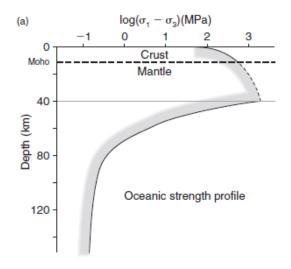
- Sequence: Sediments \rightarrow Pillow lavas \rightarrow Sheeted dikes \rightarrow Gabbro \rightarrow Peridotite.
- **Obduction**: Emplacement onto continents during collisions (e.g., Oman ophiolite).

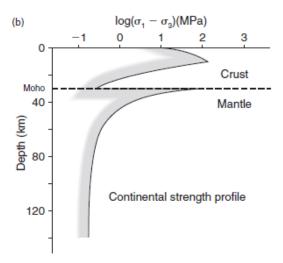
Metamorphism of Oceanic Crust

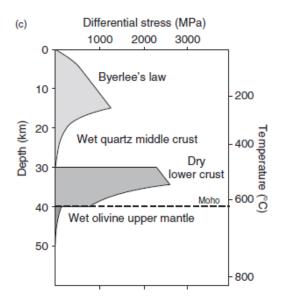
- Hydrothermal alteration at mid-ocean ridges:
 - o **Greenschist facies** (low-T alteration of basalt).
 - Serpentinization (hydration of peridotite).

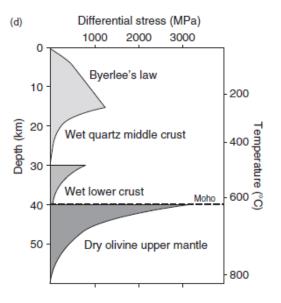
Rheology of the Earth

Rheology is the study of how materials **deform and flow** under applied forces (stresses). It combines principles of **solid mechanics** (how solids bend or break) and **fluid dynamics** (how liquids/gases flow).


Brittle vs. Ductile Deformation


- Brittle (Shallow Crust):
 - Faulting (Mohr-Coulomb criterion: $\tau = c + \mu \sigma_n$).
 - Earthquakes occur here (seismogenic zone: <25 km depth).
- Ductile (Deep Crust/Mantle):
 - Dislocation creep (power-law, dominant in upper mantle).
 - Diffusion creep (lower mantle, grain-boundary sliding).


Lithospheric Strength Profiles


- Oceanic Lithosphere:
 - Strong upper mantle (olivine-dominated).
 - Thin crust (~7 km).
- Continental Lithosphere:
 - Weak lower crust (quartz-rich, ductile).
 - "Jelly sandwich" model:

Strong upper crust \rightarrow Weak lower crust \rightarrow Strong uppermost mantle.

Schematic strength profiles through (a) oceanic and (b) continental lithosphere (after Ranalli, 1995, fi g. 12.2. Copyright © 1995, with kind permission of Springer Science and Business Media). Profile in (a) shows a 10-km-thick mafi c crust and a 75-km-thick lithosphere. Profi le in (b) shows a 30-km-thick unlayered crust and a thin, 50-km-thick lithosphere. Profi les in (c) and (d) incorporate a wet middle crust and show a dry lower crust and a wet upper mantle, and a wet lower crust and dry upper mantle, respectively (modifi ed from Mackwell et al., 1998, by permission of the American Geophysical Union. Copyright © 1998 American Geophysical Union) See text for explanation.

Isostasy

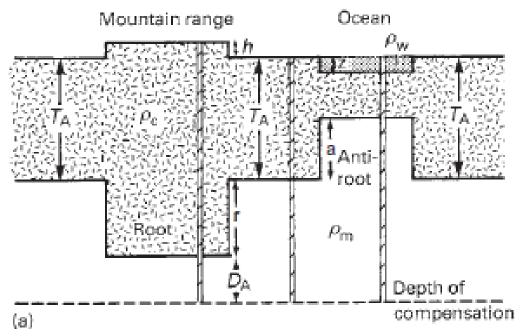
Compensation Mechanisms

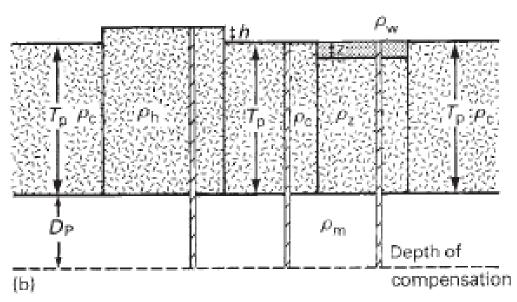
1. Airy Isostasy:

- Mountains have deep roots (like icebergs).
- Example: Himalayas (70 km crustal root).

2. Pratt Isostasy:

- Density variations support topography.
- Example: Ocean ridges (low-density mantle beneath).


3. Flexural Isostasy:


- Lithosphere bends under loads (e.g., seamounts, ice sheets).
- Example: Hawaiian Islands (~100 km flexural bulge).

Post-Glacial Rebound

• Fennoscandia & Canada:

- Uplift rates ~10 mm/yr after ice sheet melting (~20,000 years ago).
- Reveals mantle viscosity (~10²¹ Pa s).

(a) Airy mechanism of isostatic compensation. h, height of mountain above sea level; z,depth of water of density rw; TA, normal thickness of crust of density rc; r, thickness of root; a, thickness of antiroot; DA, depth of compensation below root; rm, density of mantle. (b) The Pratt mechanism of isostatic compensation. Legend as for (a) except Tp, normal thickness of crust; rh, density of crust beneath mountain; rz, density of crust beneath ocean; Dp, depth of compensation below Tp.

Lithosphere & Asthenosphere

• Lithosphere:

- Rigid outer shell (crust + uppermost mantle).
- o Thickness:
 - Oceanic: 60–100 km (thickens with age).
 - Continental: 100–250 km (thickest under cratons).

• Asthenosphere:

- Weak, ductile (LVZ, 100–300 km depth).
- Facilitates plate motion via convection.

Heat Flow

- Sources:
 - Radioactive decay (K, U, Th in crust).
 - Primordial heat (leftover from Earth's formation).

Global Patterns:

- High heat flow: Mid-ocean ridges, rifts.
- Low heat flow: Old cratons, deep ocean basins.